Secondary cup and cap products in coarse geometry
نویسندگان
چکیده
Abstract We construct secondary cup and cap products on coarse (co-)homology theories from given cross slant products. They are defined for spaces relative to weak generalized controlled deformation retracts. On ordinary cohomology, our product agrees with a by Roe. For coarsifications of topological theories, correspond the primary Higson dominated coronas via transgression maps. And in case $$\mathrm {K}$$ K -theory -homology, canonical between -theories stable corona Roe algebra under assembly co-assembly.
منابع مشابه
Coarse Geometry and Randomness
1 Introductory graph and metric notions 5 1.1 The Cheeger constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Expander graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Isoperimetric dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Rough isome...
متن کاملCup Products in Computational Topology
Topological persistence methods provide a robust framework for analyzing large point cloud datasets topologically, and have been applied with great success towards homology computations on simplicial complexes. In this paper, we apply the persistence algorithm towards calculating a set of invariants related to the cup product structure on the cohomology ring for a space. These invariants expres...
متن کاملCoarse geometry and asymptotic dimension
We prove that two spaces, whose coarse structures are induced by metrisable compactifications, are coarsely equivalent if and only if their (Higson) coronas are homeomorphic. We introduce translation C∗-algebras for coarse spaces which admit a countable, uniformly bounded cover using projection-valued measures. This was already done in [Roe03]. Here we give a more complete exposition on the sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research in the Mathematical Sciences
سال: 2021
ISSN: ['2522-0144', '2197-9847']
DOI: https://doi.org/10.1007/s40687-021-00273-4